Behaviour near the Boundary for Solutions of Elasticity Systems
نویسنده
چکیده
In this article we study the behaviour near the boundary for weak solutions of the system u 00 ? u ? (+)r((x) div u) = h ; with u(x; t) = 0 on the boundary of a domain 2 R n , and u(x; 0) = u 0 , u 0 (x; 0) = u 1 in. We show that the Sobolev norm of the solution in an "-neighbourhood of the boundary can be estimated independently of ".
منابع مشابه
Elasticity Solution of Functionally Graded Carbon Nanotube Reinforced Composite Cylindrical Panel
Based on three-dimensional theory of elasticity, static analysis of functionally graded carbon nanotube reinforced composite (FG-CNTRC) cylindrical panel subjected to mechanical uniformed load with simply supported boundary conditions is carried out. In the process, stress and displacement fields are expanded according to the Fourier series along the axial and circumferential coordinates. From ...
متن کاملExact analytical approach for free longitudinal vibration of nanorods based on nonlocal elasticity theory from wave standpoint
In this paper, free longitudinal vibration of nanorods is investigated from the wave viewpoint. The Eringen’s nonlocal elasticity theory is used for nanorods modelling. Wave propagation in a medium has a similar formulation as vibrations and thus, it can be used to describe the vibration behavior. Boundaries reflect the propagating waves after incident. Firstly, the governing quation of nanoro...
متن کاملGENERAL SOLUTION OF ELASTICITY PROBLEMS IN TWO DIMENSIONAL POLAR COORDINATES USING MELLIN TRANSFORM
Abstract In this work, the Mellin transform method was used to obtain solutions for the stress field components in two dimensional (2D) elasticity problems in terms of plane polar coordinates. the Mellin transformation was applied to the biharmonic stress compatibility equation expressed in terms of the Airy stress potential function, and the boundary value problem transformed to an algebraic ...
متن کاملElzaki transform method for finding solutions to two-dimensional elasticity problems in polar coordinates formulated using Airy stress functions
In this paper, the Elzaki transform method is used for solving two-dimensional (2D) elasticity problems in plane polar coordinates. Airy stress function was used to express the stress compatibility equation as a biharmonic equation. Elzaki transform was applied with respect to the radial coordinate to a modified form of the stress compatibility equation, and the biharmonic equation simplified t...
متن کاملVibration Analysis of a Rotating Nanoplate Using Nonlocal Elasticity Theory
The nanostructures under rotation have high promising future to be used in nano-machines, nano-motors and nano-turbines. They are also one of the topics of interests and it is new in designing of rotating nano-systems. In this paper, the scale-dependent vibration analysis of a nanoplate with consideration of the axial force due to the rotation has been investigated. The governing equation and b...
متن کامل